Fonctionnement scientifique
Principe de fonctionnement d'une cellule photovoltaïque
Les cellules photovoltaïques exploitent l'effet photoélectrique pour produire du courant continu par absorption du rayonnement solaire. Cet effet permet aux cellules de convertir directement l’énergie lumineuse des photons en électricité par le biais d’un matériau semi-conducteur transportant les charges électriques.
Une cellule photovoltaïque est composée de deux types de matériaux semi-conducteurs, l’une présentant un excès d’électrons et l’autre un déficit d'électrons. Ces deux parties sont respectivement dites « dopées » de type n et de type p. Le dopage des cristaux de silicium consiste à leur ajouter d’autres atomes pour améliorer la conductivité du matériau.
Un atome de silicium compte 4 électrons périphériques. L’une des couches de la cellule est dopée avec des atomes de phosphore qui, eux, comptent 5 électrons (soit 1 de plus que le silicium). On parle de dopage de type n comme négatif, car les électrons (de charge négative) sont excédentaires. L’autre couche est dopée avec des atomes de bore qui ont 3 électrons (1 de moins que le silicium). On parle de dopage de type p comme positif en raison du déficit d’électrons ainsi créé. Lorsque la première est mise en contact avec la seconde, les électrons en excès dans le matériau n diffusent dans le matériau p.
Constitution d'une cellule photovoltaïque (Connaissance des Énergies, d'après CEA)
En traversant la cellule photovoltaïque, les photons arrachent des électrons aux atomes de silicium des deux couches n et p. Les électrons libérés se déplacent alors dans toutes les directions. Après avoir quitté la couche p, les électrons empruntent ensuite un circuit pour retourner à la couche n. Ce déplacement d’électrons n’est autre que de l’électricité.
Etat des lieux des technologies traditionnelles
Le solaire photovoltaïque non concentré
Les technologies à base de silicium constituent plus de 90% du marché photovoltaïque mondial(1).
- Les cellules monocristallines
C’est la filière historique du photovoltaïque. Les cellules monocristallines sont les photopiles de la première génération. Elles sont élaborées à partir d’un bloc de silicium cristallisé en une seule pièce. Elles ont un bon rendement mais la méthode de production est laborieuse et coûteuse. C’est la cellule des calculatrices et des montres dites « solaires ». - Les cellules polycristallines
Les cellules polycristallines sont élaborées à partir d’un bloc de silicium composé de cristaux multiples. Elles ont un rendement plus faible que les cellules monocristallines mais leur coût de production est moindre. - Des avancées technologiques permettent aujourd'hui de produire des cellules policrystallines à couches minces afin d’économiser le silicium. Ces cellules ont une épaisseur de l’ordre de quelques micromètres d’épaisseur.
Au cours des dix dernières années, le rendement moyen d'un panneau photovoltaïque à base de silicium est passé de 12% à 17% selon l'institut allemand Fraunhofer(2).
Technologies prometteuses
Le solaire photovoltaïque concentré
Les miroirs concentrent les rayons du soleil sur une petite cellule solaire photovoltaïque à haut rendement. Grâce à cette technologie de concentration, les matériaux semi-conducteurs peuvent être remplacés par des systèmes optiques moins coûteux. A puissance égale, ceci permet d'utiliser 1 000 fois moins de matériel photovoltaïque que dans les panneaux photovoltaïques à insolation directe.
Cette technologie devrait pénétrer le marché dans un avenir proche.
Le rendement théorique maximum de la conversion photon-electron est de l'ordre de 85% (le rendement de Carnot est 95 %)(3). Le rendement expérimental maximal obtenu avec cette technologie est pour le moment de 46%(4).
Les constituants organiques (polymères)
L’utilisation de matériaux polymères vise à remplacer les matériaux minéraux par des semi-conducteurs organiques, autrement dit des plastiques, pour la fabrication de cellules photovoltaïques. Ceux-ci sont bon marché, ont des bonnes propriétés d’absorption et sont faciles à déposer. Leur coût de revient très faible se double de caractéristiques particulièrement attrayantes : plus légères et moins fragiles, leur nature flexible permet d'obtenir des matériaux souples en polymères organiques ou en silicone et même des encres photovoltaïques.
D’une durée de vie courte, elles n’offrent pour l’instant que des rendements dépassant légèrement 10% en laboratoire(5) mais pourraient servir de base au développement d’une filière industrielle.
تعليقات
إرسال تعليق